Stabilisation of Gaslift Production using a Dynamic Simulator

Yvonne Roberts: Edinburgh Petroleum Services
Matt Nicol: BP Exploration
Contents

• Why Gaslift is important
• Why the North Sea is important
• Objectives of the Study
• Methodology
• Recommendations
• Effects of Implementation
• Summary
There are several forms of Artificial lift:

- Beam Pumps
- ESP’s, PCP’s, jet and hydraulic
- Gaslift

<table>
<thead>
<tr>
<th>Type</th>
<th>Onshore</th>
<th>Offshore</th>
<th>Oil rate (bopd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Pump</td>
<td>✓</td>
<td>✗</td>
<td>1 - 200</td>
</tr>
<tr>
<td>ESP's etc</td>
<td>✓</td>
<td>✓</td>
<td>200 - 200000</td>
</tr>
<tr>
<td>Gaslift</td>
<td>✓</td>
<td>✓</td>
<td><10 - 10000</td>
</tr>
</tbody>
</table>
The importance of Gaslift

Gaslift systems have the advantage of being:
- Relatively simple to design, install and maintain
- Systems with few moving parts
- Flexible and forgiving; gaslift almost always ‘works’

If there is sufficient gas available for gaslift, it is usually the method of choice.
US DoE/EIA figures:

- Jan-Aug 2000, oil production rates (MMbopd)

<table>
<thead>
<tr>
<th>North Sea</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.70 - 6.30</td>
<td>5.70 - 5.90</td>
</tr>
</tbody>
</table>

- USA production from many more wells than in the North Sea: approximately 1 million vs. several thousand.

- North Sea wells characterised by high productivity and high fluid rates with water injection to reservoir. Sufficient gas supplies in place to allow widespread gaslift.
Revenues

• Many gaslifted fields operate sub-optimally
 – Unrealised revenue
 – Lost Profit
• Within those fields some wells will be operating intermittently or will be unstable
 – Lost revenue
 – Potentially increased costs
• Those lost and unrealised revenues can generally be acquired...at a price.
 – Need to be able to make informed decisions about the best way to proceed
Cause and Effect

- Well Production is unstable under ‘normal’ gaslift conditions, but better at ‘maximum’ production
 - Gas delivery is not stable
 - Well production is inherently unstable

- Gas delivery is unstable
 - Something broke!
 - Something changed that took the operating conditions outside of the stable envelope

- Wellbore flow is inherently unstable
 - Reservoir effects: e.g. Coning
 - Wellbore effects: e.g. Flow regimes
1. Optimise the Well Production

Optimise vb To maximise economic efficiency, by finding the best compromise among several, often conflicting, requirements.

2. Stabilise the Well Production.

Stabilise vb. To render stable or steady, by establishing an equilibrium that persists even after a slight displacement.
Build steady-state Nodal Analysis model of the Well where all the equipment works as it was designed to:

- 4460 blpd for 1000 Mscf/d @ FTHP=331 psig
- 5.5 inch OD
- 24/64ths Orifice
- 7 inch OD L= 2500-ft
- 4 inch OD
- 3400 Mscf/d @ CHP = 1785 psig
- Valve performance curve for a given CHP
- Step Change in Point of gas injection
Effect of decreasing Gas injection rate at a constant FTHP

Instability if \(Q_{gi} < 1200 \) Mscf/d

@ FTHP = 100 psig
Recommended Actions

- Change orifice to 16/64ths

More stable production over a wide range of conditions
Reasons

- Effect on Unloading and Production

<table>
<thead>
<tr>
<th>Orifice Size 64ths</th>
<th>Max Unloading gas</th>
<th>Blpd @ 1200 Mcsf/d and FTHP = 100 psig</th>
<th>CHP psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2000</td>
<td>6325</td>
<td>1650 - 1750</td>
</tr>
<tr>
<td>16</td>
<td>1500</td>
<td>7758 (+22%)</td>
<td>1770</td>
</tr>
</tbody>
</table>

- Much improved unloading action with smaller orifice, using less gas
- Significant improvement in Well Production
Outcome

• A staged approach to remedial works on the Well was taken and the orifice changed

• Acceptable levels of stability were achieved

• Increases in production were consistent with model predictions

<table>
<thead>
<tr>
<th>Source of data</th>
<th>Injected gas</th>
<th>Bld</th>
<th>FTHP</th>
<th>CHP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mscof/d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>1983</td>
<td>10934</td>
<td>87</td>
<td>1812</td>
</tr>
<tr>
<td>Model</td>
<td>1983</td>
<td>11007</td>
<td>86</td>
<td>1770</td>
</tr>
</tbody>
</table>

• No unnecessary workovers were undertaken
• Gaslift is an important form of Artificial Lift, Worldwide.

• The very flexibility of gaslift often means that it is not used to best effect.

• Tools exist for the dynamic analysis and optimisation of gaslift, both at the individual well and the field level.

• In the example shown, both stabilisation and optimisation of a single Well was achieved.

• The tools deliver financial benefit!
 – 400 bopd or ~$1000/d in this case.
Stabilisation of Gaslift Production using a Dynamic Simulator

Yvonne Roberts: Edinburgh Petroleum Services
Matt Nicol: BP Exploration