Using Foam Technology as an Artificial Lift Method

Jaime De Los Santos,
Director of East Coast

multi-chem®
FAL: Foam assisted Lift

- Liquid Loading will occur on all gas wells which produce formation or condensed fluids. The question to ask is:
 - When will the loading cycle begin?
 - How effective and efficient will the program be in controlling the liquid loading?
FAL Program

- Liquid Loading Over Time:

- ANNULAR MIST
- SLUG-ANNULAR TRANSITION
- SLUG
- BREAK THROUGH

Decreasing Gas Rate
FAL Program

• A properly designed Foam Assisted Lift (FAL) Program can be an integral part of the production plan to keep a well flowing at its true potential

• FAL is a process, not an application

• The process is measured by the percentage of success and efficiency achieved in the FAL program
FAL Program

• An example would be to create a FAL program that generates 90% to 100% efficiency VS. a simple application that generates a lower percentage of efficiency.

• Remember – The measure of a truly successful FAL program is not that you foamed a well, but rather the efficiency at which you unloaded the well and maintained incremental gas flow.
FAL Program

• Three steps for a successful FAL program:
 – Proper well diagnostics
 – Proper product selection
 – Proper application assessment
When selecting candidate wells for a FAL program, it is critical to gather as much data as possible including production history, wellbore schematics, downhole and surface pressures, temperatures, etc.
Modeling programs can be a very efficient tool when selecting candidate wells for a FAL program. However, it is critical to understand that the output data from any modeling program is only as good as the input data.
Multi-Chem currently uses two intrinsically safe Echometer systems for the candidate selection and treatment design phase of the FAL process.
Product Selection

• **Multi-Chem’s Foam Assisted Lift Product Line:**
 - Liquid Foaming Agents – 104 products
 - Low temperature products – 37 (200 F)
 - High temperature products – 60 (200 F)
 - Hydrocarbon products – 7
 - Liquid Foaming Agents with multi-treatment packages – 58
 - i.e. corrosion, scale, salt dispersion, etc.
 - All liquid foaming agents are formulated in the field, utilizing fresh produced brine and hydrocarbon fluids
Product Selection

- How does a Foaming Agent affect the critical rate?

<table>
<thead>
<tr>
<th></th>
<th>Liquid Density (lb/cu-ft)</th>
<th>Surface Tension (dynes/cm)</th>
<th>Critical Rate (mcfd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without foaming agent</td>
<td>67</td>
<td>72</td>
<td>220</td>
</tr>
<tr>
<td>With foaming agent</td>
<td>34</td>
<td>30</td>
<td>150</td>
</tr>
</tbody>
</table>
Product Selection

- **Test Methods**
 - **Field VS. Lab**
 - **Blender / malt mixer for water based foaming agent selection**
 - **Sparge method for hydrocarbon or combination hydrocarbon / water foaming agent selection**
 - **Produced fluids VS. synthetic brine / hydrocarbon**
Product Selection

• Application Considerations
 – Fluid composition (water analysis essential)
 • Scale / Corrosion
 • Solubility / dispersion / emulsion tendencies
 – Presence of solids
 – Temperature
 – Residence time
 – Addition of optional components (i.e. corrosion inhibitors, scale inhibitors, salt dispersants, etc.)
• It is extremely important to utilize the proper test methods when selecting liquid foaming agents in order to achieve the highest level of product performance
• Blender / high shear testing should be utilized when selecting liquid foaming agents for downhole applications in high to 100% water ratio wells
• It is critical to duplicate as closely as possible the amount of shear being generated downhole
Product Selection: Blender VS. Sparge

• Ignoring the reaction of downhole shear during product selection can result in:
 – Foam locking
 – Emulsion
 – Improper product selection (productivity variation)

• When to use blender / high shear testing:
 – Any time you are testing water based foaming agents
 – Wells producing 100% water
 – Wells producing higher water to condensate ratio
 – Wells with high bottom hole pressure / turbulent flow
Product Selection: Blender VS. Sparge

- Sparge / low shear testing is primarily performed using either nitrogen or methane gas at a 50 LPH rate as the agitation source.

- Fluid volumes required are the same as with the blender / high shear testing. However, due to the test method, a much lower shear rate is observed.
Product Selection: Blender VS. Sparge

- When to use sparge / low shear testing:
 - When illustrating slug flow in a liquid loaded well to an audience
 - When selecting 100% hydrocarbon foaming agents
 - When selecting combination hydrocarbon / water foaming agents for wells producing a higher percentage of condensate to water ratio
 - In wells which yield a very low bottom hole pressure / less turbulent flow (where over-treatment is commonly observed, test in conjunction with high shear blender testing)
Product Selection

• Avoid Stiff Foam
 – Shaving cream quality foam produces a tight dry foam which produces friction. A well cannot unload stiff foam any easier than it can unload heavy water

“If a little works well, a lot does not necessarily work better”
Product Selection: Hydrocarbon Foaming

- Best utilized when attempting to provide foam assisted lift to wells producing 65% and above condensate to water ratio VS. water-based foaming agents
- Primary chemistries currently being studied:
 - Fluorocarbon
 - Silicon
 - Amine
- Testing must be performed via sparge method VS. blender method due to short “half-life” of foam
Product Selection: Hydrocarbon Foaming

- Continuous application VS. batch application method is recommended with hydrocarbon foaming agents.
- Cost of hydrocarbon foaming agents are much higher than conventional water-based foaming agents.
- Injection rates for hydrocarbon foaming agents in high hydrocarbon to water ratio wells are typically 500 to 2500 ppm VS. 2500 to 25,000 ppm of conventional water-based foaming agents.
- Currently utilizing both 100% hydrocarbon foaming agents and combination hydrocarbon / water foaming agents for high hydrocarbon percentage wells.
Product Selection: Hydrocarbon Foaming

- Combination hydrocarbon / water foaming agent
- Sparged combination hydrocarbon / water foaming at 80% hydrocarbon and 20% produced water
- Pictures indicate individual foam columns for both water and hydrocarbon indicating complete foaming of fluids is occurring
- Picture to far right indicates no emulsion occurred during foaming or after foam break
Application Assessment

• Application Method
 – Batch: manual / cyclic / automated
 – Continuous: annular / capillary / plunger lift / gas lift / coil tubing / tubing punch / in conjunction with compression

• Diagnostic Treatment
 – Batch application is an excellent tool to determine well’s response to the addition of a foaming agent
 – Apply product to the loaded area
 – Analyze the reaction
 – Determine most efficient treatment design for long term application (batch VS. continuous)
Application Assessment

• Best Practices
 – Communicate process to facilitate understanding
 • It is critical to train all personnel involved on the overall FAL process
 – Flow conditions will change with time
 • Continuously trend gas production
 • Ongoing review of foaming agent performance
 • Evaluation of changing condensate and water ratios
 • Adjust foaming agent selection, application rates and dilution rates as required
 – Review program frequently with the production team
 • Quarterly reviews of the program is recommended
 • Base decisions on production improvement VS. cost

June 7 – 8, 2010 2010 Appalachian Basin Gas Well Deliquification Seminar
Case History #1

• Approximately 700 Wells
 – Approximately 8000 foot packerless completions
 – Gas wells with varying water and condensate rates

• 154 wells with foaming agent in MeOH from supplier “B”
 – Average production increase of 22 MCFD per well was achieved
 – Emulsion problems
 – High cost of product application
Case History #1

• Re-evaluation of wells
 – FAL process developed and implemented
 – Average production increase of 114 MCFD per well was achieved
 – 418% increase VS. previous program
 – Increase in revenue of $25,856,600 per year
Case History #2

- Well producing 600 MCFD, 0 BCPD, 400 BWPD
- 3.5 inch tubing, horizontal completion, approximately 14,000’
- Well loaded up daily, shut-in time of 1-2 weeks for pressure build up
- Previous attempts to use foaming agent were unable to keep the well on line
- Well evaluated and proper product selected
 - Foaming agent applied continuously via capillary
 - Constant production of 1.6 MMCFD, 0 BCPD, 650 BWPD
 - Steady revenue of $2,920,000 annually
Case History #3

- Mature offshore field with 5 candidate wells
 - 2 wells flowing; 3 wells shut-in

- Diagnostic Review
 - Echometer analyses were utilized in conjunction with a modeling program to determine the loaded state of each well
 - 4 wells were found to be at varying levels of liquid loading
 - 1 well was found not to be loading / loaded based upon Echometer analysis and well flow history
Case History #3

• Application
 – Multiple batch applications of liquid foaming agent was performed on each candidate well

• Result
 – Production gain of 9.5 MMCFD @ $5/MCF
 – Revenue increase of $17,337,500 annually
Summary

• Foam Assisted Lift is an important tool
 – When performed properly, it can be the difference between success VS. failure
 – The process is measured by the percentage of success and efficiency achieved in the FAL program
 – Onsite evaluation of produced fluids and products is essential
 – Modeling programs are useful tools; however, to find the “unlikely candidates” you must look beyond modeling programs
 – The use of Echometer analysis can be a very useful tool when production data is not available
 – Ongoing program reviews are essential
Continued Education

- Two books which discuss both mechanical and chemical means of gas well deliquification are recommended:
 - *Gas Well Deliquification* “Solutions to Gas Well Liquid Loading Problems” by Dr. James Lea
 - *Gas Well Deliquification* “Second Edition” by Dr. James Lea
 - Multi-Chem was a contributor to the “Second Edition”
 - Chapter 8 “Use of Foam to Deliquify Gas Wells”
 - Both books can be purchased online at www.amazon.com or www.barnesandnoble.com
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.