Gas Lift Valve Testing

Angel Wileman, Research Engineer
Southwest Research Institute, Fluid Dynamics
Gas Lift Valve Test Methods

Presentation Contents

• Overview of 19G2 Standard and Tests
• Background on SwRI
• Testing Methods and Facilities
• Other Testing
• Conclusion
API 19G2 Flow-Control Devices for Side-Pocket Mandrels

• Released June 2010, effective December 2010

• Validation Testing (Level V1, V2, V3)
 – Performed once per design

• Function Testing (Level F1, F2, and F3)
 – Performed on every valve sold

• SwRI has performed Validation Tests and custom tests to meet customer specifications
 – 19G2 does not require 3rd party test facility to perform tests
 – Test setups intended for flexibility in testing and customer requirements
API 19G2 Validation Testing

Validation testing

- Annex E: Interface testing
- Annex F: Insertion testing
- Annex G: Probe and travel testing and load rate determination
- Annex H: Dynamic flow testing and flow coefficient, Cv, calculation
- Annex I: Back-check testing
- Annex J: Open and closing pressure testing
- Annex K: Bellows actuation life cycle testing
- Annex L: Erosion testing
- Annex M: Shelf testing
- Annex N: Port/seat leakage rate testing
Validation testing performed at SwRI

- Annex E: Interface testing
- Annex F: Insertion testing
- Annex G: Probe and travel testing and load rate determination
- Annex H: Dynamic flow testing and flow coefficient, Cv, calculation
- Annex I: Back-check testing
 - Annex J: Open and closing pressure testing
 - Annex K: Bellows actuation life cycle testing
- Annex L: Erosion testing
 - Annex M: Shelf testing
 - Annex N: Port/seat leakage rate testing
Southwest Research Institute

- Founded in 1947
- Private, independent, applied R&D company
- Over 3,000 employees
- 11 technical divisions
- Revenue in 2012 exceeded $557 million (over 4,200 contracts)
- Over 1,200 acres / 4.86 km² facility in San Antonio, Texas

Mission Statement: Benefiting government, industry and the public through innovative science and technology.
19G2 Testing Requirements

• Pressure and Flow Requirements
 – Water and gas static pressure testing (low and high pressure)
 – Low pressure water flow testing
 – High pressure gas flow testing

• Data Acquisition and Software Requirements
 – Measurement of pressure, temperature, and flow rate
 – Gas flow control through control valves
 – Perform all tests safely
Fluid Dynamics Section

Gas Test Facility

High Bay

Annex H

Annex G / Annex L

Annex I

High-Pressure Test Cell

Feb. 4 – 8, 2013

2013 Gas-Lift Workshop
Annex G: Load and Travel Testing and Load Rate Determination

• **Probe Travel Test**
 - Determines the maximum effective travel distance for each device
 - Performed on a minimum of 7 flow control devices of each type
 - Stem travel measured with a micrometer or linearly variable differential transformer (LVDT)
 - Probe travel measured a minimum of 5 points along the travel (including maximum travel)

• **Load Rate Determination**
 - Calculated value from the results of the probe travel test
Annex G: Load and Travel Testing and Load Rate Determination

- Custom-built load rate testing fixture for PPO valves
- Fixture rated to 3,000 psi
- LVDT used to measure valve stem displacement
Load Rate Determination

Slope of this section is the load rate

Section of pressure rise without stem movement
Annex H – Flow Coefficient and Dynamic Flow Testing

• Flow coefficient measurement, Cv
 – Measured for each valve and port size
 – Measured at five points along stem travel (10%, 30%, 50%, 70%, and 100% open)
 – Performed with a modified valve

• Dynamic flow testing
 – Performed with a complete, unmodified valve
 – Performed for min. and max. port size, and every 1/8-inch in between (normally 4 or more valves per test)
 – Test performed at 6 constant injection or production pressures per valve
Nitrogen Gas Test Facilities

- Flow Rate Measurement
- Cryogenic Pump
- Heat Exchanger
- Discharge to Atmosphere
- High-Pressure Nitrogen Gas Storage
- Vertical Test Section
- Horizontal Test Section Area
- LN₂ Storage
Gas Flow Testing
Gas Flow Testing

- Constant injection pressure
- Controlled remotely by a custom Labview program
- Exhausts to atmosphere
- Programmable pressure ramps (based on system capabilities and valve time constant)
- Flow rate measured by a 3” orifice flow meter (AGA3 & NIST)
Nitrogen Gas Test Facility Capabilities

- Maximum flow rate: 10 mmscfd (196 m3/min)
- Maximum upstream flow pressure: ~2,700 psi (187 bar)
- Maximum differential pressure: ~2,700 psi
- Nitrogen storage capacity: 1,125 ft3 (32 m3) at 3,000 psi (207 bar)
- Blowdown system flow time is a function of flow rate and pressure
 - 10 mmscfd at 1,500 psi upstream = ~6 min. steady flow
 - 1 mmscfd at 2,000 psi upstream = ~20 min. steady flow

Feb. 4 – 8. 2013
Valve Modification – Cv Testing

- Flow coefficient testing valve modifications
 - Create adjustable stem to control stem travel
 - Internal flow passage must not be modified
Dynamic Testing Example

Gas Lift Valve Test
Test Flowrate and Pressures

Choked Flow

Pressure [psig]

Flowrate

Elapsed Time [sec]

Upstream Pressure
Downstream Pressure
Flowrate
Flow Coefficient Data Evaluation

Gas Lift Valve Test
Y*Cv vs. Pressure Ratio

Data also used to calculate Critical Pressure Ratio ($R_{p,crt}$)
Flow Coefficient Data Evaluation

![Graph showing flow coefficient data for different valves. The graph illustrates the relationship between flow coefficient (Cv) and stem travel. Each valve has a distinct line: Valve 1 is shown with blue diamonds, Valve 2 with red squares, and Valve 3 with green triangles. The x-axis represents stem travel, while the y-axis represents flow coefficient (Cv).]
Annex I: Back-Check Testing

- **Mechanical function test**
 - Apply pressure with water to ensure the check dart moves freely without human intervention

- **Backflow integrity test**
 - Apply water pressure (to valve’s maximum rated pressure) on the downstream side of the check and measure through leakage through pressure decay

- **Gas Test**
 - Apply 100 psi of nitrogen gas to downstream of check and measure through leakage with a gas flow meter

- **Activation test**
 - Measure pressure required to open normally closed spring loaded valves (or flow required to close a reverse-flow valve)
Annex I: Back-Check Testing

Performed in the high-pressure test cell (2 cells available at FCTF, 3rd cell coming late 2013)

- Capable of withstanding catastrophic failure of the test article
- Max. N\textsubscript{2} gas pressure: 40,000 psi
- Max. water pressure: 40,000 psi
- Max. hydraulic oil pressure: 35,000 psi
- Test fixtures locally heated or cooled
- Pressure applied remotely from a control room for safety
Annex I: Back-Check Testing

- Water or gas can be supplied to gas lift valves (water configuration shown)
- Vents double as flow meter ports during gas tests
- Test fixtures can be isolated
Annex I: Back-Check Testing

Photo courtesy of Schlumberger
Erosion Testing – Annex L

- Performed to simulate initial unloading of a well
 - Fresh water flow through complete valve
 - Flow rate fixed at 1 bbl/min (0.16 m³/min) for a total flow of 400 bbl (63.6 m³)
Other Gas Lift Valve Testing (other than 19G2)

- Sand slurry erosion testing
 - Sand types: fine to very coarse
- Flow provided by triplex pump
 - Pressure: 3,600 psi (257 bar)
 - Flow rate: 0.7 BBL/min (28 gpm)
Other Gas Lift Valve Testing (other than 19G2)

• Packing qualification
 – Seal integrity of gas lift valve packings
 – Pressure differential holds with water and gas
 – Temperatures: Cryogenic (LN$_2$) to 400°F
 – Gas through leakage measured with flow meter or bubble cup
 – Water through leakage measured through pressure decay

Photo courtesy of Schlumberger
Side Pocket Mandrel Qualification

• Inclinable test section
 – 100 ft long
 – Inclination up to 90°

• Horizontal and inclined running and pulling tests

• Pressure strain gauge tests

Photo courtesy of Schlumberger
Revisions to 19G2

- Task groups meeting to revise 19G2
 - Add a V0 validation level (currently V1, V2, and V3)
 - modeled after the Statoil qualification test
 - Remove gas flow testing from Functional Testing
Summary

- All valves stamped with the API 19G2 monogram undergo some or all of the testing mentioned in this presentation.
- There are several ways to do the tests outlined in 19G2, but certain high pressure water and gas facilities are required.
Questions?
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas-Lift Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the American Society of Mechanical Engineers (ASME), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other uses of this presentation are prohibited without the expressed written permission of the company(ies) and/or author(s) who own it and the Workshop Steering Committee.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas-Lift Workshop Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas-Lift Workshop Steering Committee members, and their supporting organizations and companies (hereinafter referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas-Lift Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.