Plunger Assisted Gas Lift
Improving lift efficiency in gas lift wells

Darryl Polasek, Vice President
David Dahlgren, Regional Business Manager

PCS Ferguson, an NPS company
(formerly PCS and Ferguson Beauregard)
Considerations

Operators are faced with the challenge of maximizing production while maintaining low operating costs. Effective and cost-efficient lift is the goal.

Two cost-effective artificial lift methods:

1. Gas lift
2. Plunger lift
Gas Lift

Applications

- Producing wells with insufficient bottom hole pressure
- Producing deep wells that can’t produce against hydrostatic head
- Initial unloading of a well that will flow later on
- Increasing the production rate of a flowing well
- Accommodating deviated and horizontal well bores
- Producing wells with sand or scale problems
Gas Lift

Operating Considerations

• Presence of formation gas
• High-pressure gas source
• Accommodates a range of GLRs
• Well suited to deviated and horizontal well bores where rod wear might occur
• Unaffected by sand or scale
• Low initial equipment costs
• Easy to operate and maintain
• Long service life
Plunger Lift

Applications

• Producing wells with low bottom hole pressure
• Producing wells with high GLRs
• Minimizing shut-ins
• Minimizing venting to the atmosphere
Plunger Lift

Operating Considerations

• Primarily used in high GLR gas wells
• Controls hydrate and paraffin buildup
• Removes and prevents scale buildup
• Easy to install
• Extremely cost effective
 – Low initial equipment costs
 – Minimal operating costs
Combining Plunger Lift & Gas Lift

Assisting plunger lift with intermittent gas injection is fairly common

- Allows cost-effective plunger lift to be used in atypical well candidates
 - Wells without sufficient gas
 - Wells with higher liquid volumes
Plunger Assisted Gas Lift

Plunger lift can also be used to economize continuous flow gas lift systems

• Continuous flow gas injection is maintained
• Flow-thru (aka continuous flow, bypass) plungers are utilized
• Increased drawdown from shut in reservoir pressure maximizes producing rate
• Production is maintained or increased, while injection gas is minimized
Plunger Assisted Gas Lift

Applications

• When lower operating costs are desired
• When GLR is below what is required to operate the plunger system independently
• When the well is experiencing unstable production
• On multi-well pad sites
 – Lower injection gas requirement often allows one compressor to inject multiple wells
Plunger Assisted Gas Lift

Benefits

• Reduced flowing bottom hole pressure and greater formation drawdown
 – Increased critical velocity is achieved and injection gas requirements are lowered
• Less injection gas = lower operating costs
 – Less buyback gas and/or lower compression required
• Paraffin control
 – Plunger “cleans” the tubing string
• Smoother operation
 – Minimal shut-in time provides constant flow of gas to the compressor and reduces system surging
Flow-thru Plungers

• Require minimal or no shut-in time

• Average fall speed in fluid: 700 feet/min

• Potential fall speed in shut-in well: 2,000 feet/min.
 (conventional plunger fall speed averages 200 feet/min)
Flow-thru Plungers

• Operate in high gas and liquid volumes
 – Minimum daily potential of 250 Mcf/day*
 – Can produce up to 200 Bbl/day
• 400 scf/ft per barrel per 1000 feet of depth
• Optimum operating angle is 40-45°

*Proportionate to line pressure and well depth; as these increase, so does gas requirement
Plunger Lift Installation

- Gas lift equipment (mandrels and valves) are already installed and functional
- Run in or find the seating nipple, monitoring the angle with the wireline
- Set the bottom hole bumper spring in the seating nipple
- Install surface equipment
- Install plunger in well
Case Study: Barnett Well

- Well production fell off due to increasing line pressure
- Well was struggling to unload on gas lift
- Operator wanted to decrease injection requirements to produce the well and reduce compressor costs ($5,000/month)
Case Study: Barnett Well

- Plunger installed
- Compressor removed
Case Study: Barnett Well

- Installed a flow-thru plunger on October 18
- Increased injection gas initially to assist with well unloading
- Once plunger was operating properly, gas injection was slowly decreased
- Gas sales fluctuated then remained steady at previous rates
- Compressor eliminated completely 19 days after flow-thru plunger installation
- Water production is 60-65 Bbl/day
Case Study: Glen Rose Well

- Operator cut out Hot Oil treatments, saving $350/month
- Lowered gas injection requirement allowed for a smaller compressor which saved an additional $2,000/month
- Third-party reserves engineer gave this well an additional 60 MBOE due to production uplift as a direct result of the plunger install
Case Study: Glen Rose Well

Elliott #1

Compressor Swap

2 7/8” Frictionless Bypass Plunger Installed
Case Study: Glen Rose Well

A controller-produced chart from the same well
Conclusion

In continuous flow gas lift wells, Plunger Assisted Gas Lift can provide improved production results, while decreasing overall lift costs.

Benefits Recap:

• Greater draw-down on the formation
• Less injection gas = lower operating costs
• Paraffin control (because of plunger travel)
• Smoother operation
• More predictable production results
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Gas Well Deliquification Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Gas Well Deliquification Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Gas Well Deliquification Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Gas Well Deliquification Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Gas Well Deliquification Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warranties of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.