11th Annual Sucker Rod Pumping Workshop
Renaissance Hotel
Oklahoma City, Oklahoma
September 15 - 18, 2015

Horizontal Well Downhole Dynamometer Data Acquisition

Project sponsored by ALRDC
Chair: Victoria Pons, Ph.D.
Cleon Dunham
Norm Hein
Bill Lane
Walter Phillips
Tony Podio
Lynn Rowlan
Project Goal & Overview

- Gather true measured data on both deviated and horizontal rod-pumped wells
 - Actual downhole load & position (i.e. dyno cards)
- Provide that measured downhole data to industry
 - Improve our understanding of side loads, bending, friction, damping, and other factors resulting from well deviation
- Similar to the Sandia project from the mid 1990’s, but focused on deviated & horizontal wells

Paper: Insights from the Downhole Dynamometer Database - 1997
SPE Paper #37500
And a number of SWPSC Papers
Historical Perspective - Sandia

- Gathered and published data from multiple test wells
- Project took place during a period of low oil prices
- Proved wave equation methods are sound and accurate

- But… This only holds for vertical wells
- Number of well drilled since 1995 (Sandia)?
 - How many of those wells are straight holes?
The Problem

• We were promised this

• But are too often seeing things like this

• Why?
 – Deviations, friction, etc.
 – Everything Sandia didn’t test
Design vs. Analysis

• But Rodstar & SROD let us design deviated wells…

Design: Start with an estimated pump card, then calculate the surface card

Analysis: Start with a measured surface card, then calculate the pump card

Design software does this “reasonably” well

Analysis software doesn’t do this for deviated wells
Design: Which is the deviated well?

- Same well, only difference is the design deviation
 - One is “deviated” the other is “vertical” – Which is which?

Ignore Peak & Minimum Loads

What can you tell about the shape of the surface cards alone?
Analysis: Which got the calculation right?

- Pump cards are good indicators of correct methods
 - An unreadable pumpcard generally means bad input
 - OR unaccounted-for dynamics in the calculations

Wellbore friction and fluid dynamics are not accounted for

A “legible” pumpcard usually indicates good inputs and methods
How Will Measuring Data Help?

- Mathematical models need to be validated
- The frictional components in deviated wells are not thoroughly understood
 - Measured data improves that understanding
 - Lets us validate our models or develop new ones if necessary

Gather True Downhole Measurements

Critical Validation Step

Compare Against Calculated Data

Update & Improve Model

“Assume No Friction!!!”
The Project – Overview

- Design & build downhole dynamometer tools
- Deploy those tools in deviated & horizontal wells
 - Multiple tools throughout the rodstring
 - Retrieve the tools, download the data
- Validate & maintain data in an accessible\published format
- ALRDC’s role is to:
 - Provide “seed” money to initiate this project
 - Generate specifications for both the dynamometer tool & well test procedures/data to be collected
 - Gather industry support and financing
 - Ensure this measured data enters the public domain
A bit more detail – Downhole Dyno Tool

- ALRDC will provide seed money for initial stage of tool design & development
 - Design expertise & development resources welcome
- Placed along the rod string, tools store data on-board
 - Location and number of tools to be determined (approximately 8 tools per well)
- Sensors:
 - Synchronized clocks – for correlating data across multiple tools
 - 3 axis accelerometer – position & relative gravity vector
 - Multiple load cells – linear loading, plus bending and compression
 - Pressure, temperature, vibration, etc.
A bit more detail – Test Wells

- All distinct categories of deviated wells
 - Vertical (for control test), Slant, “S”, and Horizontal
- Tools will log data at various points along the rodstring
 - Logged data will verify predicted/diagnostic values
- Vary stroke rate – test slow & fast pumping speeds
 - At low speeds, the frictional forces should be more evident
- Potentially test for other variables (to be determined)
 - Utilize the same well, but vary other physical parameters
 - Time and resource permitting
Industry Support

• Developing & manufacturing downhole electronics is an essential part of this project
 – Need industry financing and/or volunteer expertise

• Need deviated & horizontal test wells
 – Wells & workover resources to be provided by Operating Companies
 – Data will be stored on the tools, which will require pulling the well
 – Detailed well files need to be provided and will be made public (well names can be redacted)

• Project & data management resources
Operations Group

• ALRDC can not sustain this project alone
 – It can get the project started, but a formal organization needs to be established to ensure its ongoing success
 – Industry, Academia, National Labs, etc.

• Operations Group Functions:
 – Implement the ALRDC recommended specs & test procedures
 – Coordinate financial resources and expenditure
 – Coordinate industry participation
 – Ensure timely execution of tests and collection of data
Rough Project Outline

ALRDC will provide resources to get this project started

Tool Design & Project Specs.

Build & Lab Test Prototype Tools

RFQ For Tool Manufacturing

Build Tools

Deploy Tools, Record Data

Significant Well & Facilities Resources

Industry financial & management support needed
Conclusions

• Improved downhole models can result in significant operational expense reductions
 – Better decisions and well designs
 – We can’t eliminate downhole friction, but we should be able to design around it, once better understood

• Gathering real-world data is a first & significant step

“to measure is to know – if you cannot measure it, you cannot improve it”
– Lord Kelvin
Next Steps

• Join ALRDC and help direct this project
• You can help:
 – Develop the test program to be carried out by the project operations group
 – Generate tool & data specifications to be implemented by the operations group
 – Provide resources and funding
 – Identify & allow access to test wells
 – Participate in testing
 – Get early access to info and tools
Let us know if you can help…

- At the start of the break (in this room)
- At any of our booths:
 - Weatherford, Echometer, Black Gold
- Via email:
 - Victoria.pons@weatherford.com
- Or if you know someone who might be interested in helping…
Copyright

Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.