Pump Stroke Optimization: Results of Four Well Bakken Pilot

Bill Elmer, P.E.
Encline Artificial Lift Technologies LLC
History of Pump Stroke Optimization

• Concept and data from two pilot wells first presented to industry at 11th Annual Sucker Rod Pumping Workshop in September 2015

• Case Study of 20 Well Pilot presented at Southwestern Petroleum Short Course in April 2016

• Those presentations based on Eagle Ford wells

• Four well Bakken test begun in January 2016
In vertical wells, small pump speed changes can quickly match pump capacity to production.

Horizontal wells have fluctuating flow regimes. Short-term events (waves, slugs) can “mislead” a rod pump controller into making unwanted speed changes, rapidly cycling between maximum and minimum pump speeds.

The result: Poor pump fillage
How do operators handle poor pump fillage today?

- By manually setting pumping speed
 - Limiting maximum pumping speed
 - Reducing the minimum pumping speed

- Described by Malone at the 2016 Southwestern Petroleum Shortcourse in “Case Study – Gas Interference, Manage or Mitigate”
 - Type 1 Well - Moderate gas interference
 - Type 2 Well - Severe gas interference

- Requires regular observation and adjustment
How Pump Stroke Optimization Works

- PSO device continuously “learns” how to run a pumping unit at its optimum speed for the well
- Learns RPC equipment setpoints on Minimum and Maximum Working Speeds
- Determines when the pumping unit is on the upstroke or downstroke
- Calculates average pumping speeds
- Counts frequency of “pumpoff” or low fillage events
How Pump Stroke Optimization Works

• Delivers an alternate speed signal to the VFD
 • Keeps the maximum speed more in line with the recent average pumping speed
 • Does not over-react to artificially or temporarily high pump fillage

• Frees up skilled personnel from manually performing this repetitive task for the life of the well
 • The primary reason that PSO was developed
How Pump Stroke Optimization Works

- PSO algorithms automatically change pumping speeds as wells
 - Deplete
 - Recover from a temporary downtime event
 - Recover from a chemical treatment/flush
 - Are enhanced (by offset fracs)
 - Lose pump efficiency from worn pumping systems
Additional Benefits of PSO

- For wells pumping between 2 and 5 SPM, PSO will provide additional substantial benefits:
 - Increased pump fillage
 - Decreased pump slippage
 - Reduced daily stroke count
 - Reduced power consumption
 - Better loading for the rod string

- How? PSO utilizes the full capabilities of the VFD
PSO decreases slippage, increases pump fillage, and is better for the rods

- For RPCs that permit a downstroke speed that is slower than the upstroke speed, the PSO preferentially reduces the downstroke speed
 - This can result in substantially less pump slippage
 - Less pump slippage translates into high efficiency and less strokes per day for same amount of production

- Other benefits of slow downstroke speed
 - More time for evolving gas to exit gas anchor
 - Higher minimum rod loads reduce buckling tendencies and allow for higher maximum rod loads
Example: Conventional unit setup to run 10 SPM, but only needs to run at 3 SPM

- On VFD, 3 SPM would be 30% of 60 Hz, or 18 Hz
 - Total stroke duration is 20 seconds
 - Upstroke duration is 10 seconds (50% upstroke duration)
- By increasing the upstroke speed in relation to the downstroke speed, less of the stroke duration is spent on upstroke
 - 6 SPM (36 Hz) on upstroke, a 5 second duration
 - 2 SPM (12 Hz) on downstroke, a 15 second duration
 - Total stroke duration is still 20 seconds with 3 SPM but the upstroke duration is now only 25% of each cycle, not 50% (5/20 instead of 10/20)
Example Results

- Upstroke duration drops from 50% to 25%, resulting in deleterious pump slippage reduction of 50%

- Downstroke duration increases from 50% to 75%, giving more time for evolving gas to exit the gas separator, increasing pump fillage

- Desirable downstroke pump slippage is increased by 50%, and will hasten the opening of the travelling valve, increasing pump fillage
Four Well Bakken PSO Trial

- PSO Devices installed on January 26, 2016
- Three wells pumping continuously
- One well pumping intermittently (Well C)
- PSO devices tied in to operators existing internet
 - Allowed monitoring algorithm performance over webpage (IoT – Internet of Things)
- 4 weeks pre-PSO data, 8 weeks post-PSO
- Before and after power consumption only measured for Well B
XSPOC Data – Well A

- SPM drop by 20%
- Fillage up 5%
- Decreased Low Fillage Events
Load and Stroke Data: Well A

Max load up 800 pounds

Min load up 1200 pounds

Down 1600 Strokes per day
5 Months Post PSO Data: Steady Performance by Well A

Sept. 27 - 30, 2016

2016 Sucker Rod Pumping Workshop
XSPOC Data - Well B, erratic producer due to undulating toe up lateral

- SPM drop by 20%
- Avg Fillage up 10%
- Low fillage events far less severe
Load and Stroke Data: Well B

Max Load Unchanged

Min Load Up Slightly

Well operator reported a 15% drop in power consumption at this well

Down 1000 strokes per day, 20%
XSPOC Data – Well C, erratic producer due to undulating toe up lateral (intermittent pumping pre-PSO)

Production up an average of 10 BOPD

MSE Algorithm divergence issues, swapped to alternate algorithm 3/10
Additional Data for Well C

Note fluctuating average SPM, sustained production increase, steady fillage of 95%, and few low fillage events following algorithm change.
Load and Stroke Data: Well C

Max load unchanged

Min load up 1500 pounds

Stroke count increase due to increased production
XSPOC Data – Well D

SPM drop by 20%
Avg Fillage up by 13%
Less sub-70 fillage events
Load and Stroke Data: Well D

Max load up 1000 pounds

Min load up 1200 pounds

Down 1200+ strokes per day, 18%
Conclusions

- Wells A, B, and D experienced 18 to 20% reductions in stroke count.
- Well C did not experience a reduction in stroke count as more strokes were required to pump the 10 BOPD production increase.
- All wells experienced average pump fillage increases ranging from 5 to 13%.
- Pump fillage now rarely below 70%.
- All wells had higher minimum rod loads.
Discussion

• The primary purpose of PSO was to free up the operators staff from the mundane task of frequently adjusting maximum and minimum working speeds.

• Secondary benefits of PSO is that aggressive slowing of the downstroke provides:
 – Less pump slippage (less strokes for the same production)
 – Greater pump fillage (less strokes for the same production)
 – Power reductions approximating stroke reduction %
 – Better rod loading with potentially less rod buckling
Discussion

• Please see last year’s Sucker Rod Workshop presentation “New Method to Reduce Pump Slippage” and “Pump Stroke Optimization: A Better Way to Operate a Rod Pumped Well”

• Industry still does not recognize that a much slower downstroke in relation to the upstroke yields the benefits listed in the previous slide
Discussion

• Current industry RPC products do not provide the primary purpose of PSO, freeing up the operators' staff from monotonous, repetitive data observation required to set working speeds.

• The PSO device does a better job than a human simply by performing this task 24/7.

• Isn’t that what automation is all about?
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
Disclaimer

The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.
Additional Well D XSPOC Data
Additional Well D Load and Stroke Data