Reducing Wellhead Leaks With A Polished Rod Centralizer

Black Gold Pump & Supply

Ryan Bair
Field Applications Engineer
Why Do Stuffing Boxes Leak?

- Packing rubbers wear out
 - Misalignment, over/under tightened, high SPM’s cause polished rod to “wiggle” etc…
- Once the primary seal is compromised, flow and pressure are unrestricted
 - Large spills, down time due to clean up, loss of oil production and revenue..
- Consequences of a failed stuffing box can be DEVASTATING
 - Heavy EPA fines
 - Difficult Clean up
 - Loss of production
 - Bad publicity
Quick Overview

- Polished Rod Centralizer installs just below the stuffing-box
- Polished Rod runs through the barrel
- Barrel extends down into the pumping tee
 - Submerged in produced fluid
Actual Installation

Stuffing-Box

Polished Rod Centralizer
Polished Rod Misalignment

- Misalignment causes side-load on the seals
- Brass bushings in the stuffing-box "should" handle that side-load…
 - Soft material wears easily…
 - Bushing surface area is small…
 - Polished rod is inside larger ID tubing which allows more area for the rod to buckle.
What Does The Polished Rod Centralizer Do?

- Centralizes polished rod in pumping tee
- Prevents uneven wear and extends life of stuffing box rubbers
- Prevents catastrophic blow out of stuffing box rubbers
- Reduces pressure by 60% on average off your stuffing box
Restricting Leaks

- Same principal downhole plunger seal
 - Think “Patterson Pump Slippage”
- Fluid “slips” through centralizer–polished rod clearance, but flow is restricted
- Slippage = Lubrication
Restricting Leaks Test

- 550 barrel a day well
- Installed a valve at polished rod centralizer (below stuffing box)
- In 24 hours only 3.5 barrels of fluid leaked by

Sept. 12-15, 2017
Stuffing-Box Grease

- Grease generally more viscous
- Extend time grease remains in stuffing-box
 - Your grease/oil for packing lubrication will last much longer with the Polished Rod Centralizer
Case Study

- High frequency packing failures
- Average packing life 23 days
- Reason for leaks...
 - Unit misalignment
 - High temperatures
 - Gas (H2s)
 - Well head movement

Sept. 12-15, 2017
Case Study Continuation...

- Installed (15) polished rod centralizers in most challenging environments
- Centralizer aligned the polished rod
- Pressure at stuffing box went from 100 psi down to 40psi
- Polished rod centralizer has been running for over 120 days without any leaks and still running...
Other Application Notes

- What about rod BOP’s?
 - Install centralizer below or above rod BOP
 - Less side-load mitigation, but same flow restriction up to the stuffing-box
Conclusions

- Extend the life of stuffing-box packing
 - Reduction in side-load applied to packing
 - Reduction in pressure/fluid velocity packing experiences
 - Tight clearance minimizes flow path

- Reduce the leak rate upon stuffing box failure
 - Prevent catastrophic oil spill/leaks
 - Eliminate spraying fluid out of stuffing box
 - Reduce operator costs
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.