DEVELOPMENT OF A ROD GUIDE MODEL, WHICH GENERATES A MINIMUM LEVEL OF TURBULENCE, PERFORMING CFD ANALYSIS AND HYDRODYNAMIC COMPARISONS BETWEEN DIFFERENT GUIDE DESIGNS

Ricardo Padrón, Tenaris
Jesus Abarca, Tenaris
TenFlow Rod Guide

Agenda

- Background
- Design and Modeling Parameters
- Considerations
- Finite Element Analysis
- Model Validation Through CFD
- Comparisons
- Conclusions
- Experience (Addendum)
Background

- High production volumes demand new design challenges
- Flow restriction due to guide geometry may cause turbulence
- Inhibitor removal (Washout)
- Erosion-corrosion condition accelerates failures on rods
Modeling Considerations

- Tubing: 2 7/8"
- Sucker rod: 7/8"
- SPM: 7
- Stroke Length: 160 in
- Average velocity: 38 in/s
- Max velocity: 58.6 in/s
- Fluid: Water 100%
- Initial Turbulence: 5%
- Flow Rate: 320 bpd
- Fluid speed: 8.6 in/s

As reference with oil API 30:
- Vf = 60 in/s, Re = 4500 - turbulent flow
- Vf = 20 in/s, Re = 1000 - laminar flow
TenFlow Rod Guide

Modeling Features

- Shape
 - Length
 - Vanes
 - Valley

- EWV

- Fluid Dynamics
TenFlow Rod Guide

Modeling Features

Erodible Wear Volume (EWV)
Amount of guide material outside the rod coupling OD
Modeling

Turbulence Modeling using Finite Element Analysis (FEA)

A computational fluid dynamics model (CFD) is used to predict the effects of turbulence generated by an object, as well as large and small eddies generated by the fluid alteration.
Modeling

Turbulence Kinetic Energy (TKE)

In fluid dynamics, TKE is the mean kinetic energy per unit mass associated with eddies in turbulent flow.

High turbulence creates “swirls”
Design Considerations

EWV usually affects hydrodynamics

When designing rod guides, increasing EWV compromises hydrodynamics features.
TenFlow Rod Guide
Design Considerations

Hydrodynamic design using CFD modeling – TENFLOW Guide
Design Considerations

- **Turbulence** remove corrosion products (corrosion-erosion) and the inhibitor, accelerating corrosion rate

- **“Dead Zones”**
 Stagnant fluid allows localized corrosion
Design Considerations

Hydrodynamic design using CFD – “Dead Zones”

Guides A, B, and C show different levels of hydrodynamic design using CFD. Guide A has a minimal fluid movement, indicated by a “Dead Zone” at the reference plane. Guides B and C show considerably reduced “Dead Zones.”
Design Considerations

Turbulence Kinetic Energy caused by Guide Geometry
Rod Guide Comparisons
For 7/8” rods and for 2-7/8” tubing
Rod Guide Comparisons

For 7/8” rods and for 2-7/8” tubing

CFD shows that TenFlow guide outperforms all samples tested causing the less turbulence kinetic energy for a guide.
Field Experience (Addendum)

- TenFlow guides were tested in a well.
- Two different guide designs were also tested.
- Test was performed for 45 days due to a well service.
- All guides were calipered.
- Results were compared.
POOH Conditions

TenFlow guide hydrodynamic design prevented the creation of washout areas that can accelerate the erosion-corrosion effect.
Caliperin Guides Procedure

- Two OD measures are made (90 degrees apart)
- Only guides at the end of the rod are measured
Caliper Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average wear: 1.79% AF Material</td>
<td>Average wear: 3.65% AF Material</td>
<td>Average wear: 64.31% Polykethone Material</td>
</tr>
</tbody>
</table>

Feb. 11 - 14, 2019

2019 Artificial Lift Strategies for Unconventional Wells Workshop
Oklahoma City, OK
Caliper Results

![Bar Chart: Average Wear on Guides (After 45 Days Running)]

- TenFlow: 1.79%
- Guide A: 3.65%
- Guide B: 64.31%
Conclusions

- Best hydrodynamic guide design using CFD validation
- Enhanced Vane Design
- Highest Erodible Wear Volume for a rod guide tested
- Swirls and “Dead Zones” conditions are minimum at the end of the guide
Questions?

Ricardo A. Padrón
Technical Sales Manager
rpadron@tenaris.com
M: 432-312-8645
Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Artificial Lift Strategies for Unconventional Wells Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to:

- Display the presentation at the Workshop.
- Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee.
- Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee.

Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Artificial Lift Strategies for Unconventional Wells Workshop where it was first presented.
The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Artificial Lift Strategies for Unconventional Wells Web Site.

The Artificial Lift Research and Development Council and its officers and trustees, and the Artificial Lift Strategies for Unconventional Wells Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Artificial Lift Strategies for Unconventional Wells Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained.

The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials.

The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose.